
iPhone “Companion” Apps
“File > New Project” to App Store in two months*

Daniel Kennett

* Approval time may vary

Clarus

Yo

‘Sup

• Date started: 19th June, 2009

• Date submitted to App Store: 4th September, 2009

• Date approved: 17th September, 2009

• Date officially launched: 30th October, 2009

• Over a month between approval and launch. That’s a good problem.

• The “Release” date isn’t so important for companion apps.

Stat-o-rama

If I had seen this presentation before I started, this would’ve taken me less than two
months.

Part 1: Core Design
“Apple Core Duo”

MVC

Model Controller View

Clarus

MVC Xtreme

Model

Controller View

Clarus

KNClarusQuick
DocumentParser

Clarus for iPhone

Controller View

Document Format

• Use Core Data.

• …or don’t.

• Since you have a shared model, who the hell cares?

• Bundled document formats are fine.

• DON’T EXPORT. Just copy. Seriously.

Part 2: Syncing
“Sunk Boat”

Disclaimer
“Syncing” is probably too advanced to describe what I’m doing.

K.I.S.S

Delicious Library 2

K.I.S.S

Establishing Trust

Photo

Computer Name

Pet Name

Forming a Conversation

Pre-Sync Data

Confirm or Deny?

Document & Resources

K.I.S.S

Ça va, et toi?

 Clarus: Daniel’s iPhone

NSUInteger port = …; // From CFNetwork

NSNetService *bonjourService =
 [[NSNetService alloc]
 initWithDomain:@"local."

 type:@"_clarussync._tcp."
 name:[[UIDevice
currentDevice] name]
 port:port];

[bonjourService setDelegate:self];
[bonjourService publish];

Ça va, et toi?

 Clarus: Daniel’s iPhone

 App. Version: 1.0
 Sync Version: 1
 Device Model: iPhone
 Device UID: 645cfd…
 Capacity: 524288000
 Free: 82010112

NSDictionary *txtDict = …;

txtDict setValue:kSyncVersion
 forKey:kSyncVersionKey];

NSData *data = [NSNetService
dataFromTXTRecordDictionary:txtDict];

[bonjourService setTXTRecordData:data];
[bonjourService publish];

Ça va, et toi?

“Could not sync to “Daniel’s iPhone”
because there is not enough free space.”

“Could not sync to “Daniel’s
iPhone” because the application on the

iPhone is too old. Please check for updates
in the App Store.”

 Clarus: Daniel’s iPhone

 App. Version: 1.0
 Sync Version: 1
 Device Model: iPhone
 Device UID: 645cfd…
 Capacity: 524288000
 Free: 82010112

Resolving Services

• Use NSNetServiceBrowser.

• Different versions of OS X resolve services differently.

• You’d think the service resolves before the service’s TXT data…

• Not necessarily.

• Make sure you have both before displaying any UI.

Dear God, Error Check

• Bonjour names need to be short — less than 63 octets (bytes).

• If you go longer, it’ll just not work.

• IPV6 simply doesn’t work on iPhone.

• Setting up a service before you get WiFi doesn’t work.

• There’s millions* of potential failure points for setting up services.

* May or may not be a lie.

Dear God, Error Check

• You may get the same service resolving more than once.

• NSNetService’s -isEqual: doesn’t catch them.

• Compare TXT data - especially if you’re broadcasting a device UID.

• This seems to be sporadic.

• When syncing, don’t ever replace data in-situ. Ever ever ever.

• Sync to someplace new, move new data into place, remove old data.

NSFileHandle: A Summary

NSFileHandle: A Summary

• Easy to use!

• Seems to randomly lose bytes.

• Randomly malloc’s 16/32/64Mb
chunks.

CFNetwork

• Looks scary: CFSocketCreateRunLoopSource(kCFAllocatorDefault, sock, 0);

• But, it works. Really well. And you only have to use it a little bit.

• See the CocoaEcho sample code…

• …but remove the IPv6 stuff - it’ll fail on iPhone OS.

• In the connection callback, use CFStreamCreatePairWithSocket() to get
NSInput/OutputStreams.

NSFileHandle vs. NSIn/OutputStream

0Mb

1.5Mb

3.0Mb

4.5Mb

NSIn/OutputStream (via CFNetwork) Memory Usage

0Mb

20Mb

40Mb

60Mb

NSFileHandle Memory Usage Attempted to allocate 64Mb here.
Kaboom!

Transferring Big-Ass Files

Transferring Big-Ass Files

• You can’t hold the data in memory…

• …so we stream it right to the disk as it comes in.

• This rules out anything that requires a footer (like XML).

• We can check integrity when we’re done.

• Test with desktop-sized data!

• … you can optimise later.

Transferring Big-Ass Files

Header

headerLength

“Picture 1.jpg”

chunkNameLength

 Item Data

chunkDataLength

totalChunkLength

struct ClarusPetChunkHeader {
!
! UInt32 headerLength;
! UInt32 totalChunkLength;
! ChunkType chunkType;
! UInt32 chunkNameLength;
! UInt32 chunkDataLength;
!
} __attribute__ ((packed));

typedef enum {
!
! kChunkTypePreSyncInfoDictionary = 0,
! kChunkTypeDataFile = 1,
! kChunkTypeResource = 2,
! kChunkTypeEndOfData = 3, // Signals the natural end
! kChunkTypeSyncCancelled = 4
!
} ChunkType;

Performance

• iPhone’s WiFi is slooow.

• You have plenty of time to optimise your data as you’re copying it.

• For example, making iPhone-sized images.

• Which means no justification for using blocks :-(

• Advantage: If the user cancels, you haven’t spent five minutes creating
300 image files for nothing.

Part 3: Strategy

Think Small

• You should already have your model layer.

• If your model is good, you’ll already have an implied view hierarchy.

• Aim to be able to implement a no-frills viewer in less than a week.

• If you take longer, implementing cool UI and syncing will kill you.

No, Even Smaller Than That

• Clarus for iPhone does nothing. It’s just a viewer.

• In the future, it might do something.

• Allow you to take photos and sync them back?

• Add expenses?

• It’ll never be a full editor for a Clarus document.

Know Your Limits

• You’re not a designer.

• Employ a designer and suddenly two things are being done at once.

Me

Me +
You Know Who Design

Mo Money, Mo Problems

• Not including time, Clarus for iPhone cost nearly £1,000 to develop.

• This isn’t a good idea if you can’t survive never seeing that £1,000
(and the lost time) again.

• That said, it’s totally worth it.

• If you do it, do it well.

• In the current App Store, you need quality to overcome quantity.

Fin
Twitter: @iKenndac

AIM: Kenndac
Email: daniel@kennettnet.co.uk

http://www.kennettnet.co.uk
My Apps

http://danielkennett.org
My Opinions

http://www.kennettnet.co.uk
http://www.kennettnet.co.uk
http://danielkennett.org
http://danielkennett.org

